Step 1: Use density formula for unit cell.
\[
\rho = \frac{Z \times M}{N_A \times a^3}
\]
Where:
\(Z\) = number of atoms per unit cell
\(M = 63.55\,g/mol\)
\(a = 362\,pm = 362\times 10^{-10}\,cm = 3.62\times 10^{-8}\,cm\)
\(\rho = 8.92\,g/cm^3\)
Step 2: Substitute values.
\[
8.92 = \frac{Z \times 63.55}{(6.022\times 10^{23})(3.62\times 10^{-8})^3}
\]
Step 3: Compute \(a^3\).
\[
a^3 = (3.62\times 10^{-8})^3 \approx 4.74\times 10^{-23}\,cm^3
\]
Step 4: Solve for \(Z\).
\[
Z = \frac{8.92 \times 6.022\times 10^{23} \times 4.74\times 10^{-23}}{63.55}
\]
\[
Z \approx \frac{8.92 \times 28.55}{63.55}
\approx \frac{254.7}{63.55} \approx 4
\]
Step 5: Identify lattice type.
\[
Z=4 \Rightarrow \text{FCC (face centred cubic)}
\]
Final Answer:
\[
\boxed{\text{Face centred cubic}}
\]