The discharge rate \( Q \) is given by the formula:
\[
Q = \text{velocity} \times \text{area}
\]
The cross-sectional area \( A \) of the trapezium is calculated as:
\[
A = \text{width} \times \text{depth} = 40 \, \text{m} \times 3 \, \text{m} = 120 \, \text{m}^2
\]
Now, the discharge rate is:
\[
Q = 2 \, \text{m/s} \times 120 \, \text{m}^2 = 240 \, \text{m}^3/\text{s}
\]
Thus, the discharge rate is \( \boxed{240} \, \text{m}^3/\text{s} \).