For isoelectronic species
\(Ionic \;radii∝ \frac{(-)ve \;charge}{(+)ve \;charge}\)
Hence, correct order of ionic radii is
\(Mg^{2+} < Na^+ < F^– < O^{2–} < N^{3–}\)

In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by:
Given below are two statements:
Statement I:
will undergo alkaline hydrolysis at a faster rate than 
Statement II:
In
intramolecular substitution takes place first by involving lone pair of electrons on nitrogen.
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?

If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
In Ionic equilibrium, the ionic substance dissociates into its ions in polar solvents. The ions formed are always in equilibrium with their undissociated solute in the solution.
⇒ Representation of Ionic Equilibrium: Xa Yb ⇌ aXb+ + bYa-
Reactants and products coexist in equilibrium so that reactant conversion to product is always less than 100%. Equilibrium reactions may involve the decomposition of a covalent (non-polar) reactant or ionization of ionic compounds into their ions in polar solvents.
In this section, we will learn about the ionic equilibrium in ionic solutions. Substances in Ionic Equilibrium can be classified into two categories on the basis of their ability to conduct electricity given as under,
These are substances that consist of molecules that bear no electric charge, do not dissociate into their constituent ions and thus do not conduct electricity in their aqueous solution or molten state. For example sugar solution.
These are substances that dissociate into their constituent ions in their aqueous solution and thus conduct electricity in their aqueous solutions or molten state. For example, salt solution, acid solution, base solution etc.