Step 1: Understanding the bearing formula. The bearing of a line from point \(A(x_1, y_1)\) to point \(B(x_2, y_2)\) is given by: \[ \theta = \tan^{-1} \left( \frac{y_2 - y_1}{x_2 - x_1} \right) \]
Step 2: Substituting given values. Coordinates of \(A(100, 100)\) and \(B(50, 50)\), \[ \theta = \tan^{-1} \left( \frac{50 - 100}{50 - 100} \right) = \tan^{-1} \left( \frac{-50} {-50} \right) = \tan^{-1} (1). \]
Step 3: Identifying the quadrant. Since both differences are negative (\(x_2 - x_1 <0\) and \(y_2 - y_1 <0\)), the line lies in the third quadrant. Thus, the angle in the third quadrant is: \[ \theta = 180^\circ + 45^\circ = 225^\circ. \]