Step 1: Understanding the bearing formula. The bearing of a line from point \(A(x_1, y_1)\) to point \(B(x_2, y_2)\) is given by: \[ \theta = \tan^{-1} \left( \frac{y_2 - y_1}{x_2 - x_1} \right) \]
Step 2: Substituting given values. Coordinates of \(A(100, 100)\) and \(B(50, 50)\), \[ \theta = \tan^{-1} \left( \frac{50 - 100}{50 - 100} \right) = \tan^{-1} \left( \frac{-50} {-50} \right) = \tan^{-1} (1). \]
Step 3: Identifying the quadrant. Since both differences are negative (\(x_2 - x_1 <0\) and \(y_2 - y_1 <0\)), the line lies in the third quadrant. Thus, the angle in the third quadrant is: \[ \theta = 180^\circ + 45^\circ = 225^\circ. \]
Match List-I with List-II
List-I | List-II |
---|---|
(A) Alidade | (III) Plain table surveying |
(B) Arrow | (I) Chain surveying |
(C) Bubble Tube | (II) Leveling |
(D) Stadia hair | (IV) Theodolite surveying |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I | List-II |
---|---|
Type of correction | Formula used |
(The symbols have their usual meaning) | |
(A) Sag correction | (I) \( \pm L(1 - h/R) \) |
(B) Pull correction | (II) \( -\frac{1}{24} \times \left(\frac{W}{P}\right)^2 \) |
(C) Temperature correction | (III) \( \pm (T_f - T_s)L \) |
(D) Mean sea level correction | (IV) \( \pm \frac{(P_l - P_s) \times L}{AE} \) |
Choose the correct answer from the options given below:
The bulking of the sand is increased in volume from 20% to 40% of various sand and moisture content ranges from ……… to ……….. percent.