Calculate molarity of BaCl$_2$ solution:
Molar mass of $BaCl_2 = 137 + 2 \times 35.5$ = 208 g/mol
Moles of $BaCl_2 = \frac{2.08 \, \text{g}}{208 \, \text{g/mol}} = 0.01 \, \text{mol}$
$\text{Molarity} = \frac{0.01 \, \text{mol}}{0.2 \, \text{L}} = 0.05 \, \text{M}$
Calculate molar conductivity ($\Lambda_m$): \[ \Lambda_m = \frac{\kappa \times 1000}{\text{Molarity}} = \frac{6 \times 10^{-3} \times 1000}{0.05} = 120 \, \text{ohm}^{-1} \, \text{cm}^{2} \, \text{mol}^{-1} \] Express in required form: \[ 120 = 1.2 \times 10^{2} \Rightarrow x = 1.2 \] Thus, the correct answer is (1).
Given below are two statements.
In the light of the above statements, choose the correct answer from the options given below: