Step 1: Parametric form of parabola.
For \(y^2=4ax\), parametric point is:
\[
(at^2,2at)
\]
Step 2: Equation of normal in parametric form.
Normal to parabola at parameter \(t\) is:
\[
y=-tx+2at+at^3
\]
Step 3: Convert given line to slope form.
Given line:
\[
lx+my=1
\Rightarrow y=-\frac{l}{m}x+\frac{1}{m}
\]
So slope of line is \(-\frac{l}{m}\). Step 4: Match slope with normal slope.
Normal slope is \(-t\).
So:
\[
-t=-\frac{l}{m}\Rightarrow t=\frac{l}{m}
\]
Step 5: Compare intercepts.
Normal equation:
\[
y=-tx+2at+at^3
\Rightarrow \text{intercept}=2at+at^3
\]
Given line intercept = \(\frac{1}{m}\).
So:
\[
2at+at^3=\frac{1}{m}
\]
Substitute \(t=\frac{l}{m}\):
\[
2a\frac{l}{m}+a\left(\frac{l}{m}\right)^3=\frac{1}{m}
\]
Multiply by \(m^3\):
\[
2alm^2+al^3=m^2
\]
\[
al^3+2alm^2=m^2
\]
Final Answer:
\[
\boxed{al^3+2alm^2=m^2}
\]