Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
For a statistical data \( x_1, x_2, \dots, x_{10} \) of 10 values, a student obtained the mean as 5.5 and \[ \sum_{i=1}^{10} x_i^2 = 371. \] He later found that he had noted two values in the data incorrectly as 4 and 5, instead of the correct values 6 and 8, respectively.
The variance of the corrected data is: