Question:

The coefficient of $x^n$ in the polynomial $\left(x+^{n}C_{0}\right)\left(x+3. ^{n}C_{1}\right)\left(x+5. ^{n}C_{2}\right) .... \left(x+\left(2n+1\right)^{n}C_{n}\right)$ is

Updated On: Mar 2, 2023
  • $n . 2^n$
  • $n . 2^{n + 1}$
  • $(n + 1) . 2^n$
  • $(n + 1) . 2^{n+1}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

$\left(x+^{n}C_{0}\right)\left(x+3. ^{n}C_{1}\right)\left(x+5. ^{n}C_{2}\right) .... \left(x+\left(2n+1\right).^{n}C_{n}\right)$ $= x^{n+1}+x^{n}\left\{^{n}C_{0}+3. ^{n}C_{1}+5. ^{n}C_{2}+..... +\left(2n+1\right).^{n}C_{n}\right\}+.....$ Coeff. of $x^{n} = ^{n}C_{0} +3. ^{n}C_{1}+5. ^{n}C_{2}+..... +\left(2n+1\right).^{n}C_{n}$ $ = 1+ \left(^{n}C_{1} +2. ^{n}C_{1}\right)+\left(^{n}C_{2}+4. ^{n}C_{2}\right) + ....+\left(^{n}C_{n}+2n. ^{n}C_{n}\right)$ $= \left(1+^{n}C_{1}+..... + ^{n}C_{n}\right)+2\left(^{n}C_{1} + 2^{n}C_{2} + .... +n. ^{n}C_{n}\right)$ $= 2^{n} +2\left[n+2. \frac{n\left(n-1\right)}{2!}+3. \frac{n\left(n-1\right)\left(n-2\right)}{3!}+...+ n.1\right]$ $= 2^{n} +2n \left[1+^{n-1}C_{1}+^{n-1}C_{2}+ ..... +^{n-1}C_{n-1}\right]$ $= 2^{n}+2^{n}. 2^{n-1} = 2^{n} \left(1+n\right) = \left(n+1\right) . 2^{n}$
Was this answer helpful?
1
0

Concepts Used:

Binomial Expansion Formula

The binomial expansion formula involves binomial coefficients which are of the form 

(n/k)(or) nCk and it is calculated using the formula, nCk =n! / [(n - k)! k!]. The binomial expansion formula is also known as the binomial theorem. Here are the binomial expansion formulas.

This binomial expansion formula gives the expansion of (x + y)n where 'n' is a natural number. The expansion of (x + y)n has (n + 1) terms. This formula says:

We have (x + y)n = nC0 xn + nC1 xn-1 . y + nC2 xn-2 . y2 + … + nCn yn

General Term = Tr+1 = nCr xn-r . yr

  • General Term in (1 + x)n is nCr xr
  • In the binomial expansion of (x + y)n , the rth term from end is (n – r + 2)th .