The change in internal energy ($\Delta U$) of an ideal gas at constant volume is given by:
$\Delta U = n C_V \Delta T$
where $n$ is the number of moles, $C_V$ is the molar specific heat at constant volume, and $\Delta T$ is the change in temperature.
Given values:
Number of moles $n = 3 \text{ moles}$.
Change in internal energy $\Delta U = 1080 \text{ J}$.
Initial temperature $T_1 = 20 ^\circ\text{C}$.
Final temperature $T_2 = 40 ^\circ\text{C}$.
Change in temperature $\Delta T = T_2 - T_1 = (40 - 20) ^\circ\text{C} = 20 ^\circ\text{C}$.
Since this is a temperature difference, $\Delta T = 20 \text{ K}$.
We need to find $C_V$. Rearranging the formula:
$C_V = \frac{\Delta U}{n \Delta T}$.
Substitute the given values:
$C_V = \frac{1080 \text{ J}}{(3 \text{ moles}) \times (20 \text{ K})}$.
$C_V = \frac{1080}{60} \text{ J mol}^{-1}\text{K}^{-1}$.
$C_V = \frac{108}{6} \text{ J mol}^{-1}\text{K}^{-1}$.
$C_V = 18 \text{ J mol}^{-1}\text{K}^{-1}$.
\[ \boxed{18 \text{ J mol}^{-1}\text{K}^{-1}} \]