

Given:
Half-cell reaction: \(\text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \ , \ n = 2\)
Nernst equation: \(E = E^\circ - \frac{{2.303RT}}{nF} \log \frac{1}{{[\text{Cu}^{2+}]}}\)
\(\frac{{2.303RT}}{nF} = 0.06\)
Initial concentration of \(\text{Cu}^{2+}: [\text{Cu}^{2+}] = 1  M\)
After dilution, the concentration becomes \(0.01\)M
We need to find the change in potential, \(\Delta E = E_1 - E_2\)
Let's calculate \(E_1\), the initial potential:
\(E_1 = E^\circ + \frac{{0.06}}{2} \log \left( \left[ \text{Cu}^{2+} \right] \right)\)
Since the initial concentration is 1M:
\(E_1 = E^\circ + \frac{{0.06}}{2} \log (1)\)
\(E_1 = E^\circ + 0\)
\(E_1 = E^\circ\)
Now, after dilution, the concentration becomes 0.01M. So, \(E_2\) can be calculated as:
\(E_2 = E^\circ + \frac{{0.059}}{2} \log \left( 0.01 \right)\)
\(E_2 = E^\circ + \frac{{0.059}}{2} (-2)\)
\(E_2 = E^\circ - 0.059 \, \text{V}\)
So, the potential decreases by \(59 \, \text{mV}\). This is approximately \(60 \, \text{mV}\).
So, the correct option is (D): decreases by 60 mV
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)
1 Faraday electricity was passed through Cu$^{2+}$ (1.5 M, 1 L)/Cu and 0.1 Faraday was passed through Ag$^+$ (0.2 M, 1 L) electrolytic cells. After this, the two cells were connected as shown below to make an electrochemical cell. The emf of the cell thus formed at 298 K is:
Given: $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = 0.34 \, \text{V} $ $ E^\circ_{\text{Ag}^+/ \text{Ag}} = 0.8 \, \text{V} $ $ \frac{2.303RT}{F} = 0.06 \, \text{V} $
On charging the lead storage battery, the oxidation state of lead changes from $\mathrm{x}_{1}$ to $\mathrm{y}_{1}$ at the anode and from $\mathrm{x}_{2}$ to $\mathrm{y}_{2}$ at the cathode. The values of $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}$ are respectively:
An electrochemical cell is a device that is used to create electrical energy through the chemical reactions which are involved in it. The electrical energy supplied to electrochemical cells is used to smooth the chemical reactions. In the electrochemical cell, the involved devices have the ability to convert the chemical energy to electrical energy or vice-versa.