We are given:
Mass of the gas, \( m = 20 \, \text{g} \)
Initial temperature, \( T_1 = 25^\circ C \)
Final temperature, \( T_2 = 35^\circ C \)
Specific heat capacity of the gas at constant volume, \( C_v = 0.2 \, \text{cal} \, \text{g}^{-1} \, \text{°C}^{-1} \)
Conversion factor: \( 1 \, \text{cal} = 4.2 \, \text{J} \)
Step 1: Change in temperature.
The temperature change \( \Delta T \) is:
\[
\Delta T = T_2 - T_1 = 35^\circ C - 25^\circ C = 10^\circ C
\]
Step 2: Calculate the heat energy in calories.
The formula for calculating the heat energy at constant volume is:
\[
Q_{\text{cal}} = m C_v \Delta T
\]
Substituting the given values:
\[
Q_{\text{cal}} = 20 \times 0.2 \times 10 = 40 \, \text{cal}
\]
Step 3: Convert the energy to joules.
Since \( 1 \, \text{cal} = 4.2 \, \text{J} \), we can convert the energy from calories to joules:
\[
Q_{\text{J}} = 40 \times 4.2 = 168 \, \text{J}
\]
Final Answer:
\[
\boxed{168 \, \text{J}}
\]