The chances of \( P \), \( Q \), and \( R \) getting selected as CEO of a company are in the ratio \( 4 : 1 : 2 \), respectively. The probabilities for the company to increase its profits from the previous year under the new CEO \( P \), \( Q \), or \( R \) are \( 0.3 \), \( 0.8 \), and \( 0.5 \), respectively.
If the company increased the profits from the previous year, find the probability that it is due to the appointment of \( R \) as CEO.
Step 1: Assign probabilities
Let: \[ P(E_1) = \frac{4}{7}, \quad P(E_2) = \frac{1}{7}, \quad P(E_3) = \frac{2}{7}. \] The probabilities of increased profits under each CEO are: \[ P(A | E_1) = 0.3, \quad P(A | E_2) = 0.8, \quad P(A | E_3) = 0.5. \]
Step 2: Apply Bayes' theorem
The probability that the profits increased due to \( R \) as CEO is: \[ P(E_3 | A) = \frac{P(E_3) P(A | E_3)}{P(E_1) P(A | E_1) + P(E_2) P(A | E_2) + P(E_3) P(A | E_3)}. \]
Step 3: Substitute the values
\[ P(E_3 | A) = \frac{\frac{2}{7} \cdot 0.5}{\frac{4}{7} \cdot 0.3 + \frac{1}{7} \cdot 0.8 + \frac{2}{7} \cdot 0.5}. \]
Simplify the denominator:
\[ P(E_3 | A) = \frac{\frac{2}{7} \cdot 0.5}{\frac{4}{7} \cdot 0.3 + \frac{1}{7} \cdot 0.8 + \frac{2}{7} \cdot 0.5} = \frac{\frac{1}{7}}{\frac{1.2}{7}} = \frac{1}{3}. \]
If probability of happening of an event is 57%, then probability of non-happening of the event is

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?