Step 1: Determine velocity of the particle
The centripetal acceleration is given by:
\[
a_c = \frac{v^2}{r}
\]
Substituting the given values:
\[
18 = \frac{v^2}{0.50}
\]
\[
v^2 = 18 \times 0.50 = 9
\]
\[
v = 3 { ms}^{-1}.
\]
Step 2: Change in velocity in time \( \frac{T}{18} \)
The time period \( T \) is given by:
\[
T = \frac{2\pi r}{v}.
\]
Substituting \( r = 0.50 \) m and \( v = 3 \) ms\(^{-1}\):
\[
T = \frac{2\pi \times 0.50}{3} = \frac{\pi}{3} { s}.
\]
The time given in the problem is:
\[
t = \frac{T}{18} = \frac{\pi}{3} \times \frac{1}{18} = \frac{\pi}{54} { s}.
\]
The change in velocity for uniform circular motion over time \( t \) is:
\[
\Delta v = v \sin \theta.
\]
Since in a time \( \frac{T}{18} \), the angular displacement is:
\[
\theta = \frac{2\pi}{T} \times t = \frac{2\pi}{\pi/3} \times \frac{\pi}{54} = \frac{6}{1} \times \frac{\pi}{54} = \frac{6\pi}{54} = \frac{\pi}{9}.
\]
Thus,
\[
\Delta v = v \sin \frac{\pi}{9}.
\]
Approximating \( \sin \frac{\pi}{9} \approx 1/3 \):
\[
\Delta v = 3 \times \frac{1}{3} = 3 { ms}^{-1}.
\]
Step 3: Conclusion
Thus, the correct answer is:
\[
3 \, {ms}^{-1}.
\]