Given the cell notation:
\[
\text{M(s)}|\text{M}^{3+}(\text{aq, 0.01 M})||\text{N}^{2+}(\text{aq, 0.1 M})|\text{N(s)}
\]
and the standard electrode potentials:
\[
E^\circ_{\text{M}^{3+}/\text{M}} = 0.6 \, \text{V}, \quad E^\circ_{\text{N}^{2+}/\text{N}} = 0.1 \, \text{V}.
\]
Step 1: Overall Cell Reaction
The half-reactions are as follows:
\[
\text{M} \rightarrow \text{M}^{3+} + 3e^- \quad \text{(oxidation, multiplied by 2)},
\]
\[
\text{N}^{2+} + 2e^- \rightarrow \text{N} \quad \text{(reduction, multiplied by 3)}.
\]
The overall cell reaction is:
\[
2\text{M(s)} + 3\text{N}^{2+}(\text{aq}) \rightarrow 2\text{M}^{3+}(\text{aq}) + 3\text{N(s)}.
\]
Step 2: Standard Cell Potential (\(E^\circ_{\text{cell}}\))
The standard cell potential can be calculated using:
\[
E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}}.
\]
Substituting the provided values:
\[
E^\circ_{\text{cell}} = 0.1 - 0.6 = -0.5 \, \text{V}.
\]
Step 3: Nernst Equation
The Nernst equation for this cell is:
\[
E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.059}{n} \log Q,
\]
where \( n = 6 \) (the number of electrons transferred) and the reaction quotient \( Q \) is:
\[
Q = \frac{[\text{M}^{3+}]^2}{[\text{N}^{2+}]^3}.
\]
Substituting the given concentrations:
\[
Q = \frac{(0.01)^2}{(0.1)^3}.
\]
Simplifying:
\[
Q = \frac{10^{-4}}{10^{-3}} = 10^{-1}.
\]
Step 4: Calculate \( E_{\text{cell}} \)
Now, substitute the value of \( Q \) into the Nernst equation:
\[
E_{\text{cell}} = -0.5 - \frac{0.059}{6} \log(10^{-1}).
\]
Simplifying further:
\[
E_{\text{cell}} = -0.5 - \frac{0.059}{6} \cdot (-1).
\]
\[
E_{\text{cell}} = -0.5 + \frac{0.059}{6}.
\]
\[
E_{\text{cell}} = -0.5 + 0.00983 = -0.49017 \, \text{V}.
\]
Step 5: Approximation
To match the provided options, we approximate:
\[
E_{\text{cell}} \approx -0.51 \, \text{V}.
\]
Final Answer:
The cell potential is:
\[
\boxed{0.51 \, \text{V} \, \text{(Option A)}}.
\]