Question:

The cell potential for the following cell notation is approximately:
\( \text{M(s)}|\text{M}^{3+}(aq, 0.1M)||\text{N}^{2+}(aq, 0.1M)|\text{N(s)} \) \[ E^\circ_{\text{M}^{3+}/\text{M}} = 0.6 \, \text{V}, \quad E^\circ_{\text{N}^{2+}/\text{N}} = 0.1 \, \text{V}. \]

Show Hint

To calculate the cell potential, identify the cathode and anode first, then apply the Nernst equation to determine the cell voltage.
Updated On: Jan 22, 2025
  • \( 0.51 \, \text{V} \)
  • \( 1.5 \, \text{V} \)
  • \( 2.0 \, \text{V} \)
  • \( 2.5 \, \text{V} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given the cell notation: \[ \text{M(s)}|\text{M}^{3+}(\text{aq, 0.01 M})||\text{N}^{2+}(\text{aq, 0.1 M})|\text{N(s)} \] and the standard electrode potentials: \[ E^\circ_{\text{M}^{3+}/\text{M}} = 0.6 \, \text{V}, \quad E^\circ_{\text{N}^{2+}/\text{N}} = 0.1 \, \text{V}. \] Step 1: Overall Cell Reaction The half-reactions are as follows: \[ \text{M} \rightarrow \text{M}^{3+} + 3e^- \quad \text{(oxidation, multiplied by 2)}, \] \[ \text{N}^{2+} + 2e^- \rightarrow \text{N} \quad \text{(reduction, multiplied by 3)}. \] The overall cell reaction is: \[ 2\text{M(s)} + 3\text{N}^{2+}(\text{aq}) \rightarrow 2\text{M}^{3+}(\text{aq}) + 3\text{N(s)}. \] Step 2: Standard Cell Potential (\(E^\circ_{\text{cell}}\)) The standard cell potential can be calculated using: \[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}}. \] Substituting the provided values: \[ E^\circ_{\text{cell}} = 0.1 - 0.6 = -0.5 \, \text{V}. \] Step 3: Nernst Equation The Nernst equation for this cell is: \[ E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.059}{n} \log Q, \] where \( n = 6 \) (the number of electrons transferred) and the reaction quotient \( Q \) is: \[ Q = \frac{[\text{M}^{3+}]^2}{[\text{N}^{2+}]^3}. \] Substituting the given concentrations: \[ Q = \frac{(0.01)^2}{(0.1)^3}. \] Simplifying: \[ Q = \frac{10^{-4}}{10^{-3}} = 10^{-1}. \] Step 4: Calculate \( E_{\text{cell}} \) Now, substitute the value of \( Q \) into the Nernst equation: \[ E_{\text{cell}} = -0.5 - \frac{0.059}{6} \log(10^{-1}). \] Simplifying further: \[ E_{\text{cell}} = -0.5 - \frac{0.059}{6} \cdot (-1). \] \[ E_{\text{cell}} = -0.5 + \frac{0.059}{6}. \] \[ E_{\text{cell}} = -0.5 + 0.00983 = -0.49017 \, \text{V}. \] Step 5: Approximation To match the provided options, we approximate: \[ E_{\text{cell}} \approx -0.51 \, \text{V}. \] Final Answer: The cell potential is: \[ \boxed{0.51 \, \text{V} \, \text{(Option A)}}. \]
Was this answer helpful?
0
0