Step 1: Simplify the expression.
Given expression:
\[
\overline{P}(\overline{P} + Q)(Q + \overline{Q})
\]
Since \(Q + \overline{Q} = 1\), the expression simplifies to
\[
\overline{P}(\overline{P} + Q)
\]
Step 2: Apply absorption law.
\[
\overline{P}(\overline{P} + Q) = \overline{P}
\]
since \(\overline{P}\) multiplied by anything containing \(\overline{P}\) results in \(\overline{P}\).
Step 3: Conclusion.
Hence, the Boolean function is equivalent to \(\overline{P}\).
Match the LIST-I with LIST-II
| LIST-I (Logic Gates) | LIST-II (Expressions) | ||
|---|---|---|---|
| A. | EX-OR | I. | \( A\bar{B} + \bar{A}B \) |
| B. | NAND | II. | \( A + B \) |
| C. | OR | III. | \( AB \) |
| D. | EX-NOR | IV. | \( \bar{A}\bar{B} + AB \) |
Choose the correct answer from the options given below:

