Step 1: Convert the implication to its equivalent disjunctive form.
We use the logical equivalence \(A \Rightarrow B \equiv \neg A \lor B\).
Let the given expression be E.
\[ E \equiv \neg(p \land q) \lor ((r \land q) \land p) \]
Step 2: Apply logical laws to simplify the expression.
- Apply De Morgan's Law to the first part: \(\neg(p \land q) \equiv \neg p \lor \neg q\).
- Apply Commutative and Associative Laws to the second part: \((r \land q) \land p \equiv p \land q \land r\).
The expression becomes:
\[ E \equiv (\neg p \lor \neg q) \lor (p \land q \land r) \]
Step 3: Apply the Distributive Law.
We use the law \(A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)\).
Let \(A = (\neg p \lor \neg q)\) and \(B \land C = (p \land q) \land r\).
\[ E \equiv [(\neg p \lor \neg q) \lor (p \land q)] \land [(\neg p \lor \neg q) \lor r] \]
The first part \([(\neg p \lor \neg q) \lor (p \land q)]\) is equivalent to \(\neg(p \land q) \lor (p \land q)\), which is a tautology (T).
So the expression simplifies to:
\[ E \equiv T \land ((\neg p \lor \neg q) \lor r) \equiv \neg p \lor \neg q \lor r \]
Step 4: Analyze the options to find an equivalent expression.
Let's simplify option (B): \((p \land q) \Rightarrow (r \land q)\).
\[ (p \land q) \Rightarrow (r \land q) \equiv \neg(p \land q) \lor (r \land q) \]
\[ \equiv (\neg p \lor \neg q) \lor (r \land q) \]
Apply the Distributive Law:
\[ \equiv (\neg p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor q) \]
The second part \((\neg p \lor \neg q \lor q)\) is equivalent to \((\neg p \lor T)\), which is a tautology (T).
So, the expression simplifies to:
\[ \equiv (\neg p \lor \neg q \lor r) \land T \equiv \neg p \lor \neg q \lor r \]
This matches our simplified form of the original expression. Therefore, the expressions are equivalent.