Electronic configuration of $O _{2}^{+}$:
$\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p_{x}^{2}, \pi 2 p_{y}^{2}$
$=\pi 2 p_{z}^{2}, \pi^{*} 2 p_{y}^{1}=\pi^{*} 2 p_{z}^{0}$
$\therefore$ bond order of $\sigma_{2}^{+}=\frac{1}{2}$ (bonding electron - antibonding electron)
$=\frac{1}{2}(10-5) $
$=\frac{1}{2} \times 5=2.5$
Electronic configuration of $O _{2}^{+}$:
$\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p_{x}^{2}, \pi 2 p_{y}^{2}$
$=\pi 2 p_{x}^{2}, \pi * 2 p_{y}^{1}=\pi^{*} 2 p_{z}^{1}$
$\therefore$ bond order of $O_{2}=\frac{1}{2}(10-6)$
$=\frac{1}{2} \times 4=2$
Electronic configuration of $O _{2}^{2-}:$
$\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p_{x}^{2}, \pi 2 p_{y}^{2}$
$ \pi 2 p_{z}^{2}, \pi^{*} 2 p_{y}^{2}=\pi^{*} 2 p_{z}^{2}$
$\therefore$ bond order of $O _{2}^{2-}=\frac{1}{2}(10-8)$
$=\frac{1}{2} \times 2=1$
Electronic configuration of $O _{2}^{-}$:
$\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p_{x}^{2}, \pi 2 p_{y}^{2} $
$=\pi 2 p_{z}^{2}, \pi^{*} 2 p_{y}^{2}=\pi^{*} 2 p_{z}^{1}$
$\therefore$ bond order of $O_{2}^{-}=\frac{1}{2}(10-7)$
$=\frac{1}{2} \times 3=1.5$
Hence, the bond order of $O _{2}^{+}, O _{2}, O _{2}^{2-}$
and $O _{2}^{-}$ varies in the order :
$O _{2}^{+}> O _{2}> O _{2}^{-}> O _{2}^{2-}$