Question:

The average depth of Indian ocean is about $3000\, m$. The fractional compression, $\frac{\Delta V}{V}$ of water at the bottom of the ocean is (Given : Bulk modulus of the water $= 2.2 ? 10^9 \,N \,m^{-2}$ and $g = 10 \,m\, s^{-2}$)

Updated On: Jul 7, 2022
  • 0.82%
  • 0.91%
  • 1.36%
  • 1.24%
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The pressure exerted by a 3000 m column of water on the bottom layer is $P=h\rho g$ $= 3000 \,m ? 1000 \,kg \,m^{-3} ? 10\, m\, s^{-2}$ $=3\times10^{7}\,N\,m^{-2}$ Fractional compression $\frac{\Delta V}{V}$ is $\frac{\Delta V}{V}=\frac{P}{B}=\frac{3\times10^{7}\,N\,m^{-2}}{2.2\times10^{9}\,N\,m^{-2}}=1.36\times10^{-2}=1.36\%.$
Was this answer helpful?
0
0