The average depth of Indian ocean is about $3000\, m$. The fractional compression, $\frac{\Delta V}{V}$ of water at the bottom of the ocean is
(Given : Bulk modulus of the water $= 2.2 ? 10^9 \,N \,m^{-2}$ and $g = 10 \,m\, s^{-2}$)
Updated On: Jul 7, 2022
0.82%
0.91%
1.36%
1.24%
Hide Solution
Verified By Collegedunia
The Correct Option isC
Solution and Explanation
The pressure exerted by a 3000 m column of water on the bottom layer is
$P=h\rho g$$= 3000 \,m ? 1000 \,kg \,m^{-3} ? 10\, m\, s^{-2}$$=3\times10^{7}\,N\,m^{-2}$
Fractional compression $\frac{\Delta V}{V}$ is
$\frac{\Delta V}{V}=\frac{P}{B}=\frac{3\times10^{7}\,N\,m^{-2}}{2.2\times10^{9}\,N\,m^{-2}}=1.36\times10^{-2}=1.36\%.$