Question:

The atomic masses of \( ^1H = 1.673 \times 10^{-27} \, \text{kg} \) and \( ^{35}Cl = 58.06 \times 10^{-27} \, \text{kg} \). The reduced mass of HCl is:

Show Hint

The reduced mass is crucial for calculations involving molecular vibrations and rotational spectra.
Updated On: Mar 13, 2025
  • \(162.6 \times 10^{-27} \, \text{kg}\)
  • \(16.26 \times 10^{-27} \, \text{kg}\)
  • \(1.626 \times 10^{-27} \, \text{kg}\)
  • \(1626 \times 10^{-27} \, \text{kg}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

To determine the reduced mass (\( \mu \)) of the HCl molecule, we use the formula for the reduced mass of two particles: \[ \mu = \frac{m_1 m_2}{m_1 + m_2} \] where:

  • \( m_1 = \text{mass of hydrogen (} ^1\text{H)} = 1.673 \times 10^{-27} \, \text{kg} \)
  • \( m_2 = \text{mass of chlorine (} ^{35}\text{Cl)} = 58.06 \times 10^{-27} \, \text{kg} \)
  1. Step 1: Plug in the Values
    \[ \mu = \frac{(1.673 \times 10^{-27} \, \text{kg}) \times (58.06 \times 10^{-27} \, \text{kg})}{1.673 \times 10^{-27} \, \text{kg} + 58.06 \times 10^{-27} \, \text{kg}} \]
  2. Step 2: Calculate the Numerator and Denominator Separately
    \[ \text{Numerator} = 1.673 \times 58.06 \times 10^{-54} \, \text{kg}^2 = 97.12 \times 10^{-54} \, \text{kg}^2 \] \[ \text{Denominator} = 1.673 \times 10^{-27} \, \text{kg} + 58.06 \times 10^{-27} \, \text{kg} = 59.733 \times 10^{-27} \, \text{kg} \]
  3. Step 3: Compute the Reduced Mass
    \[ \mu = \frac{97.12 \times 10^{-54} \, \text{kg}^2}{59.733 \times 10^{-27} \, \text{kg}} = \frac{97.12}{59.733} \times 10^{-27} \, \text{kg} = 1.627 \times 10^{-27} \, \text{kg} \]
  4. Step 4: Round to Appropriate Significant Figures
    Considering the given atomic masses have three significant figures: \[ \mu \approx 1.626 \times 10^{-27} \, \text{kg} \]

Conclusion:
The reduced mass of HCl is approximately \( 1.626 \times 10^{-27} \, \text{kg} \). Therefore, the correct option is: \[ \boxed{(1) \, 1.626 \times 10^{-27} \, \text{kg}} \] Note:
It appears there was a typographical error in the original options provided. Option (3) listed \( 1626 \times 10^{-27} \, \text{kg} \), which is three orders of magnitude larger than the correct value. The accurate reduced mass aligns with option (1) or (4), both indicating \( 1.626 \times 10^{-27} \, \text{kg} \).

Was this answer helpful?
0
0