To determine the reduced mass (\( \mu \)) of the HCl molecule, we use the formula for the reduced mass of two particles: \[ \mu = \frac{m_1 m_2}{m_1 + m_2} \] where:
- \( m_1 = \text{mass of hydrogen (} ^1\text{H)} = 1.673 \times 10^{-27} \, \text{kg} \)
- \( m_2 = \text{mass of chlorine (} ^{35}\text{Cl)} = 58.06 \times 10^{-27} \, \text{kg} \)
- Step 1: Plug in the Values
\[ \mu = \frac{(1.673 \times 10^{-27} \, \text{kg}) \times (58.06 \times 10^{-27} \, \text{kg})}{1.673 \times 10^{-27} \, \text{kg} + 58.06 \times 10^{-27} \, \text{kg}} \] - Step 2: Calculate the Numerator and Denominator Separately
\[ \text{Numerator} = 1.673 \times 58.06 \times 10^{-54} \, \text{kg}^2 = 97.12 \times 10^{-54} \, \text{kg}^2 \] \[ \text{Denominator} = 1.673 \times 10^{-27} \, \text{kg} + 58.06 \times 10^{-27} \, \text{kg} = 59.733 \times 10^{-27} \, \text{kg} \] - Step 3: Compute the Reduced Mass
\[ \mu = \frac{97.12 \times 10^{-54} \, \text{kg}^2}{59.733 \times 10^{-27} \, \text{kg}} = \frac{97.12}{59.733} \times 10^{-27} \, \text{kg} = 1.627 \times 10^{-27} \, \text{kg} \] - Step 4: Round to Appropriate Significant Figures
Considering the given atomic masses have three significant figures: \[ \mu \approx 1.626 \times 10^{-27} \, \text{kg} \]
Conclusion:
The reduced mass of HCl is approximately \( 1.626 \times 10^{-27} \, \text{kg} \). Therefore, the correct option is: \[ \boxed{(1) \, 1.626 \times 10^{-27} \, \text{kg}} \] Note:
It appears there was a typographical error in the original options provided. Option (3) listed \( 1626 \times 10^{-27} \, \text{kg} \), which is three orders of magnitude larger than the correct value. The accurate reduced mass aligns with option (1) or (4), both indicating \( 1.626 \times 10^{-27} \, \text{kg} \).