Let the length be \( L \) and the breadth be \( B \).
We are given:
\[ \frac{\text{Area of rectangle}}{(\text{Perimeter})^2} = \frac{1}{25} \]
Area = \( L \times B \) and Perimeter = \( 2(L + B) \). So:
\[ \frac{LB}{(2(L + B))^2} = \frac{1}{25} \]
\[ \frac{LB}{4(L + B)^2} = \frac{1}{25} \]
\[ 25LB = 4(L + B)^2 \]
Expand the right-hand side:
\[ 25LB = 4(L^2 + B^2 + 2LB) = 4L^2 + 4B^2 + 8LB \]
Bring all terms to one side:
\[ 25LB - 8LB = 4L^2 + 4B^2 \quad \Rightarrow \quad 17LB = 4L^2 + 4B^2 \]
\[ L^2 + B^2 = \frac{17}{4}LB \]
Let \( \frac{L}{B} = r \Rightarrow L = rB \). Substitute into the equation:
\[ (rB)^2 + B^2 = \frac{17}{4} \cdot rB \cdot B \]
\[ r^2B^2 + B^2 = \frac{17}{4}rB^2 \Rightarrow B^2(r^2 + 1) = \frac{17}{4}rB^2 \]
Cancel \( B^2 \) from both sides:
\[ r^2 + 1 = \frac{17}{4}r \]
\[ 4r^2 + 4 = 17r \Rightarrow 4r^2 - 17r + 4 = 0 \]
\[ r = \frac{17 \pm \sqrt{289 - 64}}{8} = \frac{17 \pm \sqrt{225}}{8} = \frac{17 \pm 15}{8} \]
\[ r = \frac{32}{8} = 4 \quad \text{or} \quad r = \frac{2}{8} = \frac{1}{4} \]
Since \( B < L \), the valid ratio is:
\[ \frac{B}{L} = \frac{1}{4} \quad \Rightarrow \quad \boxed{1 : 4} \]
When $10^{100}$ is divided by 7, the remainder is ?