Step 1: Factor the pair of straight lines.
\[
x^2-3xy+2y^2=0
\Rightarrow (x-y)(x-2y)=0
\]
So lines are:
\[
x-y=0,\quad x-2y=0
\]
Step 2: Find intersection points with \(x+y+1=0\).
With \(x-y=0\Rightarrow x=y\):
\[
x+x+1=0\Rightarrow 2x=-1\Rightarrow x=-\frac{1}{2}
\]
So:
\[
P\left(-\frac{1}{2},-\frac{1}{2}\right)
\]
With \(x-2y=0\Rightarrow x=2y\):
\[
2y+y+1=0\Rightarrow 3y=-1\Rightarrow y=-\frac{1}{3}
\]
\[
x=2y=-\frac{2}{3}
\]
So:
\[
Q\left(-\frac{2}{3},-\frac{1}{3}\right)
\]
Intersection of \(x-y=0\) and \(x-2y=0\):
From \(x=y\) and \(x=2y\Rightarrow y=0,x=0\).
So:
\[
R(0,0)
\]
Step 3: Area of triangle \(PQR\).
Using determinant formula:
\[
\Delta=\frac{1}{2}\left|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\right|
\]
Here:
\[
P\left(-\frac{1}{2},-\frac{1}{2}\right),\;
Q\left(-\frac{2}{3},-\frac{1}{3}\right),\;
R(0,0)
\]
\[
\Delta=\frac{1}{2}\left|-\frac{1}{2}\left(-\frac{1}{3}-0\right)+\left(-\frac{2}{3}\right)(0+\frac{1}{2})+0\right|
\]
\[
=\frac{1}{2}\left|\frac{1}{6}-\frac{1}{3}\right|
=\frac{1}{2}\cdot\frac{1}{6}
=\frac{1}{12}
\]
Final Answer:
\[
\boxed{\frac{1}{12}}
\]