From a height of 'h' above the ground, a ball is projected up at an angle \( 30^\circ \) with the horizontal. If the ball strikes the ground with a speed of 1.25 times its initial speed of \( 40 \ ms^{-1} \), the value of 'h' is:
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : The potential (V) at any axial point, at 2 m distance(r) from the centre of the dipole of dipole moment vector
\(\vec{P}\) of magnitude, 4 × 10-6 C m, is ± 9 × 103 V.
(Take \(\frac{1}{4\pi\epsilon_0}=9\times10^9\) SI units)
Reason R : \(V=±\frac{2P}{4\pi \epsilon_0r^2}\), where r is the distance of any axial point, situated at 2 m from the centre of the dipole.
In the light of the above statements, choose the correct answer from the options given below :
We can note there involves a continuous interchange of potential and kinetic energy in a simple harmonic motion. The system that performs simple harmonic motion is called the harmonic oscillator.
Case 1: When the potential energy is zero, and the kinetic energy is a maximum at the equilibrium point where maximum displacement takes place.
Case 2: When the potential energy is maximum, and the kinetic energy is zero, at a maximum displacement point from the equilibrium point.
Case 3: The motion of the oscillating body has different values of potential and kinetic energy at other points.