Question:

The angular momentum of a wheel having a rotational inertia of \( 0.2 \, \text{kg} \, \text{m}^2 \) about its symmetric axis decreases from \( 4 \) to \( 2 \, \text{kg} \, \text{m}^2 \, \text{s}^{-1} \) in \( 4 \, \text{s} \). The average power of the wheel is

Show Hint

Use the change in rotational kinetic energy to compute average power when angular velocity is indirectly given via angular momentum.
Updated On: May 17, 2025
  • 7.5 W
  • 15 W
  • 5 W
  • 12 W
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given: \[ \begin{align} \text{Initial angular momentum} = L_1 = 4 \, \text{kg m}^2/\text{s}, \quad \text{Final angular momentum} = L_2 = 2 \, \text{kg m}^2/\text{s} \] \[ \text{Time interval} = \Delta t = 4 \, \text{s}, \quad \text{Moment of inertia} = I = 0.2 \, \text{kg m}^2 \] Angular momentum \( L = I \omega \Rightarrow \omega = \frac{L}{I} \) So: \[ \omega_1 = \frac{4}{0.2} = 20 \, \text{rad/s}, \quad \omega_2 = \frac{2}{0.2} = 10 \, \text{rad/s} \] Now, average power is: \[ \begin{align} \text{Power} = \frac{\Delta(\text{Rotational K.E.})}{\Delta t} = \frac{\frac{1}{2} I (\omega_1^2 - \omega_2^2)}{\Delta t} \] \[ \begin{align} = \frac{1}{2} \cdot 0.2 \cdot (400 - 100) / 4 = \frac{0.2 \cdot 300}{2 \cdot 4} = \frac{60}{4} = 7.5 \, \text{W} \]
Was this answer helpful?
0
0