Given:
\[
\begin{align}
\text{Initial angular momentum} = L_1 = 4 \, \text{kg m}^2/\text{s}, \quad
\text{Final angular momentum} = L_2 = 2 \, \text{kg m}^2/\text{s}
\]
\[
\text{Time interval} = \Delta t = 4 \, \text{s}, \quad \text{Moment of inertia} = I = 0.2 \, \text{kg m}^2
\]
Angular momentum \( L = I \omega \Rightarrow \omega = \frac{L}{I} \)
So:
\[
\omega_1 = \frac{4}{0.2} = 20 \, \text{rad/s}, \quad \omega_2 = \frac{2}{0.2} = 10 \, \text{rad/s}
\]
Now, average power is:
\[
\begin{align}
\text{Power} = \frac{\Delta(\text{Rotational K.E.})}{\Delta t} = \frac{\frac{1}{2} I (\omega_1^2 - \omega_2^2)}{\Delta t}
\]
\[
\begin{align}
= \frac{1}{2} \cdot 0.2 \cdot (400 - 100) / 4 = \frac{0.2 \cdot 300}{2 \cdot 4} = \frac{60}{4} = 7.5 \, \text{W}
\]