The equation for projectile motion is:
\[
y = x \tan \theta - \frac{g x^2}{2 u^2 \cos^2 \theta}
\]
Given the trajectory in the figure, we analyze the initial velocity components and displacement ratios:
\[
\tan \theta = \frac{\text{vertical displacement}}{\text{horizontal displacement}}
\]
From the observed motion and correct calculations:
\[
\tan \theta = \frac{4}{3}
\]
Thus, the angle of projection is:
\[
\theta = \tan^{-1} \left(\frac{4}{3}\right)
\]