Let the height of the tower be \( h \), and let the initial distance from point \( A \) to the foot of the tower be \( x \). After walking a distance \( d \) towards the tower, the new distance to the foot of the tower becomes \( x - d \).
Step 1: Use the tangent function for both angles of elevation.
From point \( A \), the angle of elevation is \( \alpha \), so:
\[ \tan\alpha = \frac{h}{x} \quad \implies \quad x = \frac{h}{\tan\alpha}. \]
After walking a distance \( d \), the angle of elevation becomes \( \beta \), so:
\[ \tan\beta = \frac{h}{x - d} \quad \implies \quad x - d = \frac{h}{\tan\beta}. \]
Step 2: Substitute \( x = \frac{h}{\tan\alpha} \) into \( x - d = \frac{h}{\tan\beta} \).
\[ \frac{h}{\tan\alpha} - d = \frac{h}{\tan\beta}. \]
Rearrange to isolate \( d \):
\[ d = \frac{h}{\tan\alpha} - \frac{h}{\tan\beta}. \]
Factor out \( h \):
\[ d = h \left( \frac{1}{\tan\alpha} - \frac{1}{\tan\beta} \right). \]
Step 3: Simplify using cotangent identities.
Recall that \( \cot\theta = \frac{1}{\tan\theta} \). Substituting this:
\[ d = h (\cot\alpha - \cot\beta). \]
Solve for \( h \):
\[ h = \frac{d}{\cot\alpha - \cot\beta}. \]
Final Answer: The height of the tower is \( \mathbf{\frac{d}{\cot\alpha - \cot\beta}} \), which corresponds to option \( \mathbf{(3)} \).