Step 1: Extracting direction vectors.
For a line in symmetric form:
\[
\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}
\]
the direction vector is \( (a, b, c) \).
For the first line:
\[
\frac{x + 1}{2} = \frac{y + 3}{2} = \frac{z - 4}{-1}
\]
The direction vector is:
\[
\mathbf{d_1} = (2, 2, -1)
\]
For the second line:
\[
\frac{x - 4}{1} = \frac{y + 4}{2} = \frac{z + 1}{2}
\]
The direction vector is:
\[
\mathbf{d_2} = (1, 2, 2)
\]
Step 2: Using the angle formula.
The angle \( \theta \) between two lines with direction vectors \( \mathbf{d_1} = (a_1, b_1, c_1) \) and \( \mathbf{d_2} = (a_2, b_2, c_2) \) is given by:
\[
\cos \theta = \frac{\mathbf{d_1} \cdot \mathbf{d_2}}{|\mathbf{d_1}| |\mathbf{d_2}|}
\]
Step 3: Computing the dot product.
\[
\mathbf{d_1} \cdot \mathbf{d_2} = (2 \times 1) + (2 \times 2) + (-1 \times 2)
\]
\[
= 2 + 4 - 2 = 4
\]
Step 4: Computing magnitudes.
\[
|\mathbf{d_1}| = \sqrt{2^2 + 2^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3
\]
\[
|\mathbf{d_2}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3
\]
Step 5: Computing \( \cos \theta \).
\[
\cos \theta = \frac{4}{3 \times 3} = \frac{4}{9}
\]
Step 6: Computing the angle.
\[
\theta = \cos^{-1} \frac{4}{9}
\]
Thus, the correct answer is (B) \( \cos^{-1} \frac{4}{9} \).