For the first line, the direction vector is given by the coefficients of x, y, and z, which is \(\left( \frac{1}{3}, \frac{1}{5}, \frac{1}{4} \right)\)
For the second line, the direction vector is also given by the coefficients of x, y, and z, which is \(\left( \frac{1}{1}, \frac{1}{4}, \frac{1}{2} \right)\), or simply \((1, \frac{1}{4}, \frac{1}{2})\)
Now, we can calculate the dot product of the two direction vectors:
\(\left(\frac{1}{3}\right)(1) + \left(\frac{1}{5}\right)\left(\frac{1}{4}\right) + \left(\frac{1}{4}\right)\left(\frac{1}{2}\right)\)
\(=\frac{1}{3} + \frac{1}{20} + \frac{1}{8}\)
\(=\frac{27}{40}\)
The magnitude of the first direction vector is
\(\sqrt{(\frac{1}{3})^2 + (\frac{1}{5})^2 + (\frac{1}{4})^2}\)
= \(\sqrt{\frac{1}{9} + \frac{1}{25} + \frac{1}{16}} = \sqrt{\frac{25}{225} + \frac{9}{225} + \frac{14}{225}}\)
= \(\sqrt{\frac{48}{225}}\)
= \(\sqrt{\frac{16}{75}}\)
= \(\frac{4}{\sqrt{75}}\)
The magnitude of the second direction vector is
\(\sqrt{1^2 + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{2}\right)^2}\)
= \(\sqrt{1 + \frac{1}{16} + \frac{1}{4}}\)
= \(\sqrt{\frac{16}{16} + \frac{1}{16} + \frac{4}{16}}\)
= \(\sqrt{\frac{21}{16}}\)
= \(\frac{\sqrt{21}}{4}\)
Using the dot product formula, we have:
\(\cos(\theta) = \frac{\frac{27}{40}}{\left(\frac{4}{\sqrt{75}}\right) \cdot \left(\frac{\sqrt{21}}{4}\right)}\)
= \(\frac{27}{40} \times \frac{\sqrt{75}}{4\sqrt{21}}\)
= \(\frac{27\sqrt{75}}{160\sqrt{21}}\)
= \(\frac{27}{160} \times \frac{\sqrt{75}}{\sqrt{21}}\)
= \(\frac{27}{160} \times \frac{\sqrt{25 \times 3}}{\sqrt{3 \times 7}}\)
= \(\frac{27}{160} \times \frac{\sqrt{3}}{\sqrt{7}}\)
= \(\frac{27\sqrt{3}}{160\sqrt{7}}\)
Therefore, the correct option is (C) \(\theta = \cos^{-1}\left(\frac{8\sqrt{3}}{15}\right)\)
Given:
Line 1: \( \frac{x+3}{3} = \frac{y-1}{5} = \frac{z+3}{4} \)
Line 2: \( \frac{x+1}{1} = \frac{y-4}{4} = \frac{z-5}{2} \)
Step 1: Direction ratios
From Line 1: direction vector \( \vec{a}_1 = \langle 3, 5, 4 \rangle \)
From Line 2: direction vector \( \vec{a}_2 = \langle 1, 4, 2 \rangle \)
Step 2: Dot product
\( \vec{a}_1 \cdot \vec{a}_2 = (3)(1) + (5)(4) + (4)(2) = 3 + 20 + 8 = 31 \)
Step 3: Magnitudes
\( |\vec{a}_1| = \sqrt{3^2 + 5^2 + 4^2} = \sqrt{9 + 25 + 16} = \sqrt{50} \)
\( |\vec{a}_2| = \sqrt{1^2 + 4^2 + 2^2} = \sqrt{1 + 16 + 4} = \sqrt{21} \)
Step 4: Cosine of angle
\(\cos \theta = \frac{\vec{a}_1 \cdot \vec{a}_2}{|\vec{a}_1||\vec{a}_2|}\) = \(\frac{27}{160} \times \frac{\sqrt{75}}{\sqrt{21}}\)
= \(\frac{27}{160} \times \frac{\sqrt{25 \times 3}}{\sqrt{3 \times 7}}\)
= \(\frac{27}{160} \times \frac{\sqrt{3}}{\sqrt{7}}\)
= \(\frac{27\sqrt{3}}{160\sqrt{7}}\)
Therefore, the correct option is (C) \(\theta = \cos^{-1}\left(\frac{8\sqrt{3}}{15}\right)\)
Answer: \(\theta = \cos^{-1}\left(\frac{8\sqrt{3}}{15}\right)\)
For the first line, the direction vector is given by the coefficients of \(x\), \(y\), and \(z\), which is \(\left( \frac{1}{3}, \frac{1}{5}, \frac{1}{4} \right)\).
For the second line, the direction vector is also given by the coefficients of \(x\), \(y\), and \(z\), which is \(\left( 1, \frac{1}{4}, \frac{1}{2} \right)\), or simply \((1, \frac{1}{4}, \frac{1}{2})\).
Now, we can calculate the dot product of the two direction vectors:
\[ \left(\frac{1}{3}\right)(1) + \left(\frac{1}{5}\right)\left(\frac{1}{4}\right) + \left(\frac{1}{4}\right)\left(\frac{1}{2}\right) \]
\[ = \frac{1}{3} + \frac{1}{20} + \frac{1}{8} \]
\[ = \frac{27}{40} \]
The magnitude of the first direction vector is:
\[ \sqrt{\left(\frac{1}{3}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{1}{4}\right)^2} \]
\[ = \sqrt{\frac{1}{9} + \frac{1}{25} + \frac{1}{16}} = \sqrt{\frac{25}{225} + \frac{9}{225} + \frac{14}{225}} \]
\[ = \sqrt{\frac{48}{225}} = \sqrt{\frac{16}{75}} = \frac{4}{\sqrt{75}} \]
The magnitude of the second direction vector is:
\[ \sqrt{1^2 + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{2}\right)^2} \]
\[ = \sqrt{1 + \frac{1}{16} + \frac{1}{4}} = \sqrt{\frac{16}{16} + \frac{1}{16} + \frac{4}{16}} = \sqrt{\frac{21}{16}} = \frac{\sqrt{21}}{4} \]
Using the dot product formula, we have:
\[ \cos(\theta) = \frac{\frac{27}{40}}{\left(\frac{4}{\sqrt{75}}\right) \cdot \left(\frac{\sqrt{21}}{4}\right)} \]
\[ = \frac{27}{40} \times \frac{\sqrt{75}}{4\sqrt{21}} = \frac{27\sqrt{75}}{160\sqrt{21}} \]
\[ = \frac{27}{160} \times \frac{\sqrt{75}}{\sqrt{21}} = \frac{27}{160} \times \frac{\sqrt{25 \times 3}}{\sqrt{3 \times 7}} = \frac{27}{160} \times \frac{\sqrt{3}}{\sqrt{7}} \]
\[ = \frac{27\sqrt{3}}{160\sqrt{7}} \]
Therefore, the correct option is (C) \(\theta = \cos^{-1}\left(\frac{8\sqrt{3}}{15}\right)\).
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: