The given equation of the line is:
\[ \overrightarrow{r} = \hat{i} + 2\hat{j} + t(3\hat{i} + 2\hat{j} - \hat{k}) \]
The direction vector of the line is:
\[ \overrightarrow{d} = 3\hat{i} + 2\hat{j} - \hat{k} \]
The given plane equation is:
\[ 2x - 3y - z = 1 \]
The normal vector of the plane is:
\[ \overrightarrow{N} = 2\hat{i} - 3\hat{j} - \hat{k} \]
The angle \( \theta \) between the line and the plane is given by:
\[ \sin\theta = \frac{|\overrightarrow{d} \cdot \overrightarrow{N}|}{|\overrightarrow{d}| |\overrightarrow{N}|} \]
Computing the dot product:
\[ (3\hat{i} + 2\hat{j} - \hat{k}) \cdot (2\hat{i} - 3\hat{j} - \hat{k}) \] \[ = (3 \times 2) + (2 \times -3) + (-1 \times -1) \] \[ = 6 - 6 + 1 = 1 \]
Computing the magnitudes:
\[ |\overrightarrow{d}| = \sqrt{3^2 + 2^2 + (-1)^2} = \sqrt{9 + 4 + 1} = \sqrt{14} \] \[ |\overrightarrow{N}| = \sqrt{2^2 + (-3)^2 + (-1)^2} = \sqrt{4 + 9 + 1} = \sqrt{14} \]
Computing \( \sin\theta \):
\[ \sin\theta = \frac{|1|}{\sqrt{14} \times \sqrt{14}} = \frac{1}{14} \]
Final Answer:
\[ \theta = \sin^{-1} \left( \frac{1}{14} \right) \]