Given: $Q = Q_0 e^{-Rt/2L}$
When $Q = 0.50 Q_0$:
$0.50 Q_0 = Q_0 e^{-Rt/2L}$
$0.50 = e^{-Rt/2L}$
$\ln(0.50) = -\frac{Rt}{2L}$
$\ln\left(\frac{1}{2}\right) = -\frac{Rt}{2L}$
$-\ln 2 = -\frac{Rt}{2L}$
\[ t = \frac{2L \ln 2}{R} \]
Given: $R = 1.5 \, \Omega$, $L = 12 \, \text{mH} = 12 \times 10^{-3} \, H$, $\ln 2 = 0.693$
\[ t = \frac{2(12 \times 10^{-3} \, H)(0.693)}{1.5 \, \Omega} \approx 11.088 \times 10^{-3} \, s \approx 11.09 \, ms \]
Find output voltage in the given circuit.
A | B | Y |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 1 |
1 | 1 | 0 |
AB is a part of an electrical circuit (see figure). The potential difference \(V_A - V_B\), at the instant when current \(i = 2\) A and is increasing at a rate of 1 amp/second is: