The amount of energy required to break a bond is the same as the amount of energy released when the same bond is formed. In a gaseous state, the energy required for homolytic cleavage of a bond is called Bond Dissociation Energy (BDE) or Bond Strength. BDE is affected by the s-character of the bond and the stability of the radicals formed. Shorter bonds are typically stronger bonds. BDEs for some bonds are given below:
Correct match of the C–H bonds (shown in bold) in Column J with their BDE in Column K is
Column J | Column K | ||
---|---|---|---|
P | \(\text{H--CH(CH}_3\text{)}_2\) | i | 132 |
Q | \(\text{H--CH}_2\text{Ph}\) | ii | 110 |
R | \(\text{H--CH}=CH_2\) | iii | 95 |
S | \(\text{H--C≡CH}\) | iv | 88 |
P – iii, Q – iv, R – ii, S – i
P – i, Q – ii, R – iii, S – iv
P – iii, Q – ii, R – i, S – iv
P – ii, Q – i, R – iv, S – iii
Order of stability of free radical
\(Q > P > R > S\)
\(\text{Stability of free radical } \alpha \frac{1}{\text{Bond energy}}\)
∴ Order of bond energy :
\(S > R > P > Q\)
For the following reaction,
\(\text{CH}_4\text{(g)} + \text{Cl}_2\text{(g)} \overset{\text{light}}{\longrightarrow} \text{CH}_3\text{Cl (g)} + \text{HCl(g)}\)
the correct statement is
Initiation step is exothermic with \(\Delta\)H° = –58 kcal mol–1
Propagation step involving ·CH3 formation is exothermic with \(\Delta\)H° = –2 kcal mol–1
Propagation step involving CH3Cl formation is endothermic with \(\Delta\)H° = +27 kcal mol–1
The reaction is exothermic with \(\Delta\)H° = –25 kcal mol–1
Step (1) → Endothermic (bond breaking)
Step (2) → ∆H = 105 – 103 = 2 kcal/mol (Endothermic)
Step (3) → ∆H = 58 – 85 = –27 kcal/mol (Exothermic)
For complete reaction
\(\text{CH}_4\text{(g)} + \text{Cl}_2\text{(g)} \overset{\text{light}}{\longrightarrow} \text{CH}_3\text{Cl (g)} + \text{HCl(g)}\)
∆H = 58 + 105 – 85 – 103
= –25 kcal/mol
Identify the correct orders against the property mentioned:
A. H$_2$O $>$ NH$_3$ $>$ CHCl$_3$ - dipole moment
B. XeF$_4$ $>$ XeO$_3$ $>$ XeF$_2$ - number of lone pairs on central atom
C. O–H $>$ C–H $>$ N–O - bond length
D. N$_2$>O$_2$>H$_2$ - bond enthalpy
Choose the correct answer from the options given below:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is: