Question:

The algebraic equation of degree 4 whose roots are the translates of the roots of the equation x4+5x3+6x2+7x+9=0 x^4 + 5x^3 + 6x^2 + 7x + 9 = 0 by 1 -1 is:

Show Hint

To translate the roots of a polynomial by 1 -1 , substitute x+1 x + 1 into the equation and expand the terms.
Updated On: Mar 24, 2025
  • x4+3x33x2+6x+4=0 x^4 + 3x^3 - 3x^2 + 6x + 4 = 0
  • x4+9x3+27x2+38x+28=0 x^4 + 9x^3 + 27x^2 + 38x + 28 = 0
  • x4+5x3+6x2+7x+9=0 x^4 + 5x^3 + 6x^2 + 7x + 9 = 0
  • x4+5x3+6x27x+9=0 x^4 + 5x^3 + 6x^2 - 7x + 9 = 0
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given the equation: x4+5x3+6x2+7x+9=0. x^4 + 5x^3 + 6x^2 + 7x + 9 = 0. Let the roots of this equation be r1,r2,r3,r4 r_1, r_2, r_3, r_4 . The equation can then be written as: (xr1)(xr2)(xr3)(xr4)=0. (x - r_1)(x - r_2)(x - r_3)(x - r_4) = 0. We are asked to find the equation whose roots are the translates of these roots by 1 -1 . This means the new roots will be r11,r21,r31,r41 r_1 - 1, r_2 - 1, r_3 - 1, r_4 - 1
Step 1: To translate the roots by 1 -1 , we substitute x+1 x + 1 for x x in the original equation. This gives the new equation: ((x+1)r1)((x+1)r2)((x+1)r3)((x+1)r4)=0. ((x + 1) - r_1)((x + 1) - r_2)((x + 1) - r_3)((x + 1) - r_4) = 0. We now expand this expression by substituting x+1 x + 1 into the equation x4+5x3+6x2+7x+9=0 x^4 + 5x^3 + 6x^2 + 7x + 9 = 0
Step 2: Substitute x+1 x + 1 into the original equation: f(x+1)=(x+1)4+5(x+1)3+6(x+1)2+7(x+1)+9. f(x + 1) = (x + 1)^4 + 5(x + 1)^3 + 6(x + 1)^2 + 7(x + 1) + 9. Now expand each term: (x+1)4=x4+4x3+6x2+4x+1, (x + 1)^4 = x^4 + 4x^3 + 6x^2 + 4x + 1, 5(x+1)3=5(x3+3x2+3x+1)=5x3+15x2+15x+5, 5(x + 1)^3 = 5(x^3 + 3x^2 + 3x + 1) = 5x^3 + 15x^2 + 15x + 5, 6(x+1)2=6(x2+2x+1)=6x2+12x+6, 6(x + 1)^2 = 6(x^2 + 2x + 1) = 6x^2 + 12x + 6, 7(x+1)=7x+7. 7(x + 1) = 7x + 7. Thus, the expanded equation is: x4+4x3+6x2+4x+1+5x3+15x2+15x+5+6x2+12x+6+7x+7+9. x^4 + 4x^3 + 6x^2 + 4x + 1 + 5x^3 + 15x^2 + 15x + 5 + 6x^2 + 12x + 6 + 7x + 7 + 9. Now combine like terms: x4+(4x3+5x3)+(6x2+15x2+6x2)+(4x+15x+12x+7x)+(1+5+6+7+9). x^4 + (4x^3 + 5x^3) + (6x^2 + 15x^2 + 6x^2) + (4x + 15x + 12x + 7x) + (1 + 5 + 6 + 7 + 9). This simplifies to: x4+9x3+27x2+38x+28=0. x^4 + 9x^3 + 27x^2 + 38x + 28 = 0. Thus, the required equation is x4+9x3+27x2+38x+28=0 x^4 + 9x^3 + 27x^2 + 38x + 28 = 0 .

Was this answer helpful?
0
0