The adjoint (adjugate) of the matrix \(\begin{bmatrix}1&2 \\ 3&4\end{bmatrix}\) is
Step 1: Recall the 2\(\times\)2 formula. For \(A=\begin{bmatrix}a&b \\ c&d\end{bmatrix}\), \[ \operatorname{adj}(A)=\begin{bmatrix}d&-b \\ -c&a\end{bmatrix}. \] This comes from taking cofactors and then transposing the cofactor matrix (for a \(2\times2\), that reduces to swapping \(a\leftrightarrow d\) and negating the off–diagonals). \\ [4pt]
Step 2: Apply it to \(A=\begin{bmatrix}1&2 \\ 3&4\end{bmatrix}\). Here \(a=1,\ b=2,\ c=3,\ d=4\). Therefore \[ \operatorname{adj}(A)=\begin{bmatrix}4&-2 \\ [2pt]-3&1\end{bmatrix}. \] This matches option (A).