The energy \( E \) of a photon is given by:
\[E = \frac{hc}{\lambda}\]
\[35\]
Substitute \( E = 6 \, \text{eV} \) and \( hc = 1240 \, \text{eV} \text{nm} \):
\[6 = \frac{1240}{\lambda \, (\text{nm})}\]
Rearrange to find \( \lambda \):
\[\lambda = \frac{1240}{6} = 207 \, \text{nm}\]
The graph shows the variation of current with voltage for a p-n junction diode. Estimate the dynamic resistance of the diode at \( V = -0.6 \) V.
In the given circuit, the equivalent resistance between points A and D is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: