The energy \( E \) of a photon is given by:
\[E = \frac{hc}{\lambda}\]
\[35\]
Substitute \( E = 6 \, \text{eV} \) and \( hc = 1240 \, \text{eV} \text{nm} \):
\[6 = \frac{1240}{\lambda \, (\text{nm})}\]
Rearrange to find \( \lambda \):
\[\lambda = \frac{1240}{6} = 207 \, \text{nm}\]
The graph shows the variation of current with voltage for a p-n junction diode. Estimate the dynamic resistance of the diode at \( V = -0.6 \) V.
Assertion : In a semiconductor diode, the thickness of the depletion layer is not fixed.
Reason (R): Thickness of depletion layer in a semiconductor device depends upon many factors such as biasing of the semiconductor.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).