The absolute value of the difference of the coefficients of $x^4$ and $x^6$ in the expansion of
$\frac{2x^2}{(x^2+1)(x^2+2)}$
is:
If
$ 2^m 3^n 5^k, \text{ where } m, n, k \in \mathbb{N}, \text{ then } m + n + k \text{ is equal to:} $
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______