Step 1: Partial Fraction Expansion
Expanding the function:
\[
\frac{2x^2}{(x+1)(x+2)} = A(x+2) + B(x+1)
\]
Solving for \( A \) and \( B \), we find:
\[
A = 1, \quad B = -\frac{1}{2}
\]
Step 2: Expanding Each Term
Using binomial series, we expand:
\[
\frac{1}{(x+1)} = 1 - x + x^2 - x^3 + \dots
\]
\[
\frac{1}{(x+2)} = \frac{1}{2} (1 - x/2 + x^2/4 - x^3/8 + \dots)
\]
Multiplying by \( 2x^2 \), we extract coefficients of \( x^4 \) and \( x^6 \):
\[
\text{Coefficient of } x^4 = \frac{5}{4}, \quad \text{Coefficient of } x^6 = -\frac{8}{4}
\]
Step 3: Finding Absolute Difference
\[
\left| \frac{5}{4} - \left(-\frac{8}{4} \right) \right| = \frac{13}{4}
\]
Thus, the correct answer is \( \frac{13}{4} \).