To find the absolute maximum value of the function \(f(x)=\sin x + \cos x\) on the interval \([0, \pi]\), we will follow these steps:
- Determine the derivative of the function:
\[f'(x)=\cos x - \sin x\]
- Find the critical points by solving \(f'(x)=0\):
\[\cos x - \sin x = 0 \Rightarrow \cos x = \sin x\]
Solving \(\cos x = \sin x\), we get:
\[\tan x = 1 \Rightarrow x = \frac{\pi}{4}\]
- Evaluate \(f(x)\) at critical points and endpoints of the interval \([0, \pi]\):
- At \(x=0\):
\[f(0)=\sin 0 + \cos 0 = 0 + 1 = 1\]
- At \(x=\frac{\pi}{4}\):
\[f\left(\frac{\pi}{4}\right)=\sin\left(\frac{\pi}{4}\right)+\cos\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}=\sqrt{2}\]
- At \(x=\pi\):
\[f(\pi)=\sin \pi + \cos \pi = 0 - 1 = -1\]
- Compare these values to find the absolute maximum:
The values of \(f(x)\) are 1, \(\sqrt{2}\), and -1. Therefore, the absolute maximum value in the interval \([0, \pi]\) is \(\sqrt{2}\).
Thus, the absolute maximum value of \(f(x)=\sin x + \cos x\) on \([0, \pi]\) is \(\sqrt{2}\).