Test whether the function \(f: \mathbb{R} \to \mathbb{R}\) defined by
\[
f(x) =
\begin{cases}
x+5, & \text{if } x \le 1 \\
x-5, & \text{if } x > 1
\end{cases}
\]
is continuous at \(x=1\).
Show Hint
For piecewise functions, the points where the definition changes are the most likely points of discontinuity. Always check the continuity at these points by comparing the left-hand limit, right-hand limit, and the function's value.
Step 1: Understanding the Concept:
A function \(f(x)\) is continuous at a point \(x=c\) if:
1. \(f(c)\) is defined.
2. \(\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x)\) (the limit exists).
3. \(\lim_{x \to c} f(x) = f(c)\).
Step 2: Key Formula or Approach:
At \(x=1\), compute:
1. LHL: \(\lim_{x \to 1^-} f(x)\)
2. RHL: \(\lim_{x \to 1^+} f(x)\)
3. \(f(1)\)
Step 3: Detailed Calculation:
The function is defined as:
\[
f(x) =
\begin{cases}
x+5, & x \le 1 \\
x-5, & x > 1
\end{cases}
\]