Given expression:
\(\tan \left( 2 \tan^{-1} \left( \frac{2}{5} \right) \right)\)
Using the identity:
\(\tan (2x) = \frac{2 \tan x}{1 - \tan^2 x}\)
Let \( x = \tan^{-1} \left( \frac{2}{5} \right) \), so \(\tan x = \frac{2}{5}\).
Applying the identity:
\(\tan (2x) = \frac{2 \times \frac{2}{5}}{1 - \left(\frac{2}{5}\right)^2}\)
Calculating the denominator:
\(1 - \frac{4}{25} = \frac{25}{25} - \frac{4}{25} = \frac{21}{25}\)
Calculating the numerator:
\(2 \times \frac{2}{5} = \frac{4}{5}\)
Dividing:
\(\frac{\frac{4}{5}}{\frac{21}{25}}\)
\(= \frac{4}{5} \times \frac{25}{21} = \frac{4 \times 25}{5 \times 21} = \frac{100}{105} = \frac{20}{21}\)
Thus, the correct answer is:
\(\frac{20}{21}\)
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying: