Given three identical bags each containing 10 balls, whose colours are as follows:
| Bag I | 3 Red | 2 Blue | 5 Green |
| Bag II | 4 Red | 3 Blue | 3 Green |
| Bag III | 5 Red | 1 Blue | 4 Green |
A person chooses a bag at random and takes out a ball. If the ball is Red, the probability that it is from Bag I is $ p $ and if the ball is Green, the probability that it is from Bag III is $ q $, then the value of $ \frac{1}{p} + \frac{1}{q} $ is:
A gardener wanted to plant vegetables in his garden. Hence he bought 10 seeds of brinjal plant, 12 seeds of cabbage plant, and 8 seeds of radish plant. The shopkeeper assured him of germination probabilities of brinjal, cabbage, and radish to be 25%, 35%, and 40% respectively. But before he could plant the seeds, they got mixed up in the bag and he had to sow them randomly.

An electricity utility company charges ₹7 per kWh. If a 40-watt desk light is left on for 10 hours each night for 180 days, what would be the cost of energy consumption? If the desk light is on for 2 more hours each night for the 180 days, what would be the percentage-increase in the cost of energy consumption?
Three villages P, Q, and R are located in such a way that the distance PQ = 13 km, QR = 14 km, and RP = 15 km, as shown in the figure. A straight road joins Q and R. It is proposed to connect P to this road QR by constructing another road. What is the minimum possible length (in km) of this connecting road?
Note: The figure shown is representative.

For the clock shown in the figure, if
O = O Q S Z P R T, and
X = X Z P W Y O Q,
then which one among the given options is most appropriate for P?
