Suppose two planets (spherical in shape) of radii R and 2 R, but mass M and 9 M respectively have a centre to centre separation 8 R as shown in the figure. A satellite of mass 'm' is projected from the surface of the planet of mass 'M' directly towards the centre of the second planet. The minimum speed 'v' required for the satellite to reach the surface of the second planet is $\sqrt{\frac{aGM}{7R}}$ then the value of 'a' is _________. [Given : The two planets are fixed in their position] 
Net gravitational force at the center of a square is found to be \( F_1 \) when four particles having masses \( M, 2M, 3M \) and \( 4M \) are placed at the four corners of the square as shown in figure, and it is \( F_2 \) when the positions of \( 3M \) and \( 4M \) are interchanged. The ratio \( \dfrac{F_1}{F_2} = \dfrac{\alpha}{\sqrt{5}} \). The value of \( \alpha \) is 


Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
