Suppose two planets (spherical in shape) of radii R and 2 R, but mass M and 9 M respectively have a centre to centre separation 8 R as shown in the figure. A satellite of mass 'm' is projected from the surface of the planet of mass 'M' directly towards the centre of the second planet. The minimum speed 'v' required for the satellite to reach the surface of the second planet is $\sqrt{\frac{aGM}{7R}}$ then the value of 'a' is _________. [Given : The two planets are fixed in their position] 
Net gravitational force at the center of a square is found to be \( F_1 \) when four particles having masses \( M, 2M, 3M \) and \( 4M \) are placed at the four corners of the square as shown in figure, and it is \( F_2 \) when the positions of \( 3M \) and \( 4M \) are interchanged. The ratio \( \dfrac{F_1}{F_2} = \dfrac{\alpha}{\sqrt{5}} \). The value of \( \alpha \) is 

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 