7
8
9
13
For the equation \( 2x^2 + kx + 5 = 0 \), the discriminant must be negative: \[ D_1 = k^2 - 4(2)(5) = k^2 - 40 < 0 \Rightarrow k^2 < 40 \Rightarrow -\sqrt{40} < k < \sqrt{40} \Rightarrow -2\sqrt{10} < k < 2\sqrt{10} \] Since \( \sqrt{10} \approx 3.16 \), we have: \[ -6.32 < k < 6.32 \Rightarrow k \in (-6.32, 6.32) \]
For the equation \( x^2 + (k - 5)x + 1 = 0 \), the discriminant must be positive: \[ D_2 = (k - 5)^2 - 4(1)(1) = k^2 - 10k + 21 > 0 \] Factor the inequality: \[ k^2 - 10k + 21 > 0 \Rightarrow (k - 3)(k - 7) > 0 \Rightarrow k < 3 \text{ or } k > 7 \]
From Step 1: \( k \in (-\sqrt{40}, \sqrt{40}) \approx (-6.32, 6.32) \) From Step 2: \( k < 3 \text{ or } k > 7 \) Intersection:
Valid integer values: \( -6, -5, -4, -3, -2, -1, 0, 1, 2 \) Total = \( \boxed{9} \)
\[ \boxed{9} \quad \text{(Correct Option: C)} \]
We are given two quadratic equations:
Use the discriminant condition \( D < 0 \) for no real roots: \[ D = k^2 - 4(2)(5) = k^2 - 40 < 0 \Rightarrow k \in (-\sqrt{40}, \sqrt{40}) \Rightarrow k \in (-2\sqrt{10}, 2\sqrt{10}) \] Approximating: \( \sqrt{10} \approx 3.16 \Rightarrow 2\sqrt{10} \approx 6.32 \) \[ \Rightarrow k \in (-6.32, 6.32) \]
Use the discriminant condition \( D > 0 \): \[ D = (k - 5)^2 - 4 > 0 \Rightarrow k^2 - 10k + 21 > 0 \Rightarrow (k - 3)(k - 7) > 0 \Rightarrow k \in (-\infty, 3) \cup (7, \infty) \]
Intersection of:
Gives:
Valid integers are: \[ -6, -5, -4, -3, -2, -1, 0, 1, 2 \] That’s a total of: \[ \boxed{9} \text{ integer values} \]
\[ \boxed{\text{Option (C): } 9} \]