Let the profits of C1, C2, C3, C4, and C5 be: \[ P_1, \ P_2, \ P_3, \ P_4, \ P_5 \]
Given: \[ P_1 : P_2 : P_3 = 9 : 10 : 8 \] Let: \[ P_1 = 9x, \quad P_2 = 10x, \quad P_3 = 8x \]
Given: \[ P_2 : P_4 : P_5 = 18 : 19 : 20 \] Let: \[ P_2 = 18y, \quad P_4 = 19y, \quad P_5 = 20y \]
Since \( P_2 = 10x = 18y \): \[ x = 1.8y \]
Given: \[ P_5 = P_1 + 19 \] Substitute: \[ 20y = 9x + 19 \] Replace \( x \) with \( 1.8y \): \[ 20y = 9(1.8y) + 19 \] \[ 20y = 16.2y + 19 \] \[ 3.8y = 19 \] \[ y = 5 \]
\[ x = 1.8y = 1.8 \times 5 = 9 \]
\[ P_1 = 9x = 81, \quad P_2 = 10x = 90, \quad P_3 = 8x = 72 \] \[ P_4 = 19y = 95, \quad P_5 = 20y = 100 \]
\[ \text{Total} = P_1 + P_2 + P_3 + P_4 + P_5 \] \[ = 81 + 90 + 72 + 95 + 100 = 438 \ \text{crore} \]
\[ \boxed{\text{Total profit = 438 crore}} \]