For an exponential distribution, the memoryless property applies, meaning:
P(X > s + t | X > s) = P(X > t)
Here, we have:
Using the exponential survival function:
P(X > 10) = eβΞ» Γ 10
Substituting the value of Ξ»:
P(X > 10) = eβ1/5
If A is any event associated with sample space and if E1, E2, E3 are mutually exclusive and exhaustive events. Then which of the following are true?
(A) \(P(A) = P(E_1)P(E_1|A) + P(E_2)P(E_2|A) + P(E_3)P(E_3|A)\)
(B) \(P(A) = P(A|E_1)P(E_1) + P(A|E_2)P(E_2) + P(A|E_3)P(E_3)\)
(C) \(P(E_i|A) = \frac{P(A|E_i)P(E_i)}{\sum_{j=1}^{3} P(A|E_j)P(E_j)}, \; i=1,2,3\)
(D) \(P(A|E_i) = \frac{P(E_i|A)P(E_i)}{\sum_{j=1}^{3} P(E_i|A)P(E_j)}, \; i=1,2,3\)
Choose the correct answer from the options given below:
The sum of the payoffs to the players in the Nash equilibrium of the following simultaneous game is ............
Player Y | ||
---|---|---|
C | NC | |
Player X | X: 50, Y: 50 | X: 40, Y: 30 |
X: 30, Y: 40 | X: 20, Y: 20 |