The Reynolds Transport Theorem (RTT) relates the rate of change of an extensive property within a control volume to the rate at which the property enters or exits the control volume. In the RTT, the property is first considered in the system and its total change is then analyzed as it flows in and out of the control volume.
Therefore, the correct sequence of phrases is:
- The rate of change of system extensive property can be calculated by summing the rate of change of the amount of the same property in the control volume, and the rate at which the property is exiting the surface of the control volume.
Thus, the correct answer is (A) system, control volume, exiting.
Suppose that 2 is an eigenvalue of the matrix
Then the value of \( \alpha \) is equal to (Answer in integer):
In the figures given below, L and H indicate low and high pressure centers, respectively; PGF, CoF and CeF indicate Pressure Gradient Force, Coriolis Force and Centrifugal Force, respectively; \( V \) is Velocity. [The arrows indicate only the directions but not the magnitudes of the forces and velocity.]
Which of the following is/are the correct representation(s) of the directions of various forces and velocity in the gradient wind balance in the northern hemisphere?
Which of the following is the correct form of the mass divergence form of the continuity equation for a compressible fluid? [In the given equations, \( \rho \) is the density and \( \nabla \) the three-dimensional velocity vector of the fluid.]
[(i)] $\displaystyle \frac{\partial \rho}{\partial t} + \nabla \times (\rho \mathbf{v}) = 0$
[(ii)] $\displaystyle \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$
[(iii)] $\displaystyle \frac{\partial \mathbf{v}}{\partial t} + \rho \cdot \nabla \mathbf{v} = 0$
[(iv)] $\displaystyle \frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho = 0$