Step 1: Recall the formula for principal stresses.
The principal stresses \( \sigma_1 \) and \( \sigma_2 \) at a point are given by:
\[
\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2},
\]
where \( \sigma_x \) and \( \sigma_y \) are the normal stresses, and \( \tau_{xy} \) is the shear stress.
Step 2: Substitute the given values.
Given:
\[
\sigma_x = 30 \, \text{MPa}, \quad \sigma_y = 18 \, \text{MPa}, \quad \tau_{xy} = 8 \, \text{MPa},
\]
\[
\frac{\sigma_x + \sigma_y}{2} = \frac{30 + 18}{2} = 24,
\]
\[
\frac{\sigma_x - \sigma_y}{2} = \frac{30 - 18}{2} = 6,
\]
\[
\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2 = 6^2 + 8^2 = 36 + 64 = 100,
\]
\[
\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = \sqrt{100} = 10.
\]
Step 3: Calculate the principal stresses.
\[
\sigma_1 = 24 + 10 = 34 \, \text{MPa},
\]
\[
\sigma_2 = 24 - 10 = 14 \, \text{MPa}.
\]
Step 4: Verify the result.
The principal stresses are 34 MPa and 14 MPa, which match option (2).
Step 5: Select the correct answer.
The principal stresses are 34 MPa and 14 MPa, matching option (2).