- First, calculate the time for acceleration (\( t_1 \)) and deceleration (\( t_2 \)) phases. Given the total time \( t_1 + t_2 = 5 \, \text{s} \).
- The acceleration \( t_1 = \frac{v}{4} \) and deceleration \( t_2 = \frac{v}{6} \), solve for \( v \):
\[
\frac{v}{4} + \frac{v}{6} = 5 \Rightarrow v = 12 \, \text{m/s}
\]
- Calculate the distances:
\[
s_1 = \frac{1}{2} \times 4 \times (3)^2 = 18 \, \text{m}, \quad s_2 = 12 \times 2 - \frac{1}{2} \times 6 \times (2)^2 = 12 \, \text{m}
\]
- Total distance traveled is \( s = 18 \, \text{m} + 12 \, \text{m} = 30 \, \text{m} \).