Step 1: Understanding the Concept:
A system of linear equations can be represented in matrix form as \( AX = B \), where A is the matrix of coefficients, X is the column matrix of variables, and B is the column matrix of constants. The solution can be found by pre-multiplying both sides by the inverse of A, which gives \( X = A^{-1}B \).
Step 2: Key Formula or Approach:
1. Express the system of equations in the matrix form \( AX = B \).
2. Find the inverse of the coefficient matrix A, using \( A^{-1} = \frac{1}{\det(A)}\text{adj}(A) \).
3. Solve for the variable matrix X by computing the product \( X = A^{-1}B \).
Step 3: Detailed Explanation or Calculation:
1. Formulate the matrix equation:
The given system is:
\( 3x - 2y + 3z = 8 \)
\( 2x + y - z = 1 \)
\( 4x - 3y + 2z = 4 \)
This can be written as \( AX=B \), where:
\[ A = \begin{bmatrix} 3 & -2 & 3
2 & 1 & -1
4 & -3 & 2 \end{bmatrix}, X = \begin{bmatrix} x
y
z \end{bmatrix}, B = \begin{bmatrix} 8
1
4 \end{bmatrix} \]
2. Find the inverse of A:
First, calculate the determinant of A:
\[ \det(A) = 3( (1)(2) - (-1)(-3) ) - (-2)( (2)(2) - (-1)(4) ) + 3( (2)(-3) - (1)(4) ) \]
\[ \det(A) = 3(2 - 3) + 2(4 + 4) + 3(-6 - 4) \]
\[ \det(A) = 3(-1) + 2(8) + 3(-10) = -3 + 16 - 30 = -17 \]
Since \( \det(A) \neq 0 \), a unique solution exists.
Next, find the adjugate of A. The matrix of cofactors is:
\( C_{11} = -1 \), \( C_{12} = -8 \), \( C_{13} = -10 \)
\( C_{21} = -5 \), \( C_{22} = -6 \), \( C_{23} = 1 \)
\( C_{31} = -1 \), \( C_{32} = 9 \), \( C_{33} = 7 \)
\[ \text{Cofactor Matrix} = \begin{bmatrix} -1 & -8 & -10
-5 & -6 & 1
-1 & 9 & 7 \end{bmatrix} \]
\[ \text{adj}(A) = C^T = \begin{bmatrix} -1 & -5 & -1
-8 & -6 & 9
-10 & 1 & 7 \end{bmatrix} \]
\[ A^{-1} = \frac{1}{-17} \begin{bmatrix} -1 & -5 & -1
-8 & -6 & 9
-10 & 1 & 7 \end{bmatrix} \]
3. Solve for X:
\[ X = A^{-1}B = \frac{1}{-17} \begin{bmatrix} -1 & -5 & -1
-8 & -6 & 9
-10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8
1
4 \end{bmatrix} \]
Perform the matrix multiplication:
\[ \begin{bmatrix} (-1)(8) + (-5)(1) + (-1)(4)
(-8)(8) + (-6)(1) + (9)(4)
(-10)(8) + (1)(1) + (7)(4) \end{bmatrix} = \begin{bmatrix} -8 - 5 - 4
-64 - 6 + 36
-80 + 1 + 28 \end{bmatrix} = \begin{bmatrix} -17
-34
-51 \end{bmatrix} \]
Now, multiply by the scalar \( \frac{1}{-17} \):
\[ X = \frac{1}{-17} \begin{bmatrix} -17
-34
-51 \end{bmatrix} = \begin{bmatrix} \frac{-17}{-17}
\frac{-34}{-17}
\frac{-51}{-17} \end{bmatrix} = \begin{bmatrix} 1
2
3 \end{bmatrix} \]
\[ \begin{bmatrix} x
y
z \end{bmatrix} = \begin{bmatrix} 1
2
3 \end{bmatrix} \]
Step 4: Final Answer:
The solution to the system of equations is \( x = 1, y = 2, z = 3 \).