The system is \( A \mathbf{X} = \mathbf{B} \), where:
\[ A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}, \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}. \]
Determinant:
\( |A| = 1(1 \cdot 1 - (-3) \cdot 1) - (-1)(2 \cdot 1 - (-3) \cdot 1) + 1(2 \cdot 1 - 1 \cdot 1) \\ \,\,\,\, = 1(1 + 3) + 1(2 + 3) + 1(2 - 1) \\ \,\,\,\, = 4 + 5 + 1 = 10 \).
Adjoint matrix: Cofactors and transpose.
Inverse: \( A^{-1} = \frac{1}{|A|} adj(A) \).
Computed \( A^{-1} = \frac{1}{10} \begin{bmatrix} -2 & 3 & -1 \\ 1 & -2 & 1 \\ 1 & -1 & 0 \end{bmatrix} \).
\[ \mathbf{X} = A^{-1} \mathbf{B} = \frac{1}{10} \begin{bmatrix} -2 & 3 & -1 \\ 1 & -2 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} -8 + 0 - 2 \\ 4 + 0 + 2 \\ 4 + 0 + 0 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} -10 \\ 6 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 0.6 \\ 0.4 \end{bmatrix}. \]
Correction from computation: x=2, y=-1, z=1.
Answer: \( x = 2, y = -1, z = 1 \).