The given differential equation is:
\[
\frac{dy}{dx} + \frac{2x}{1 + x^2} \cdot y = x
\]
This is a first-order linear differential equation of the form:
\[
\frac{dy}{dx} + P(x)y = Q(x)
\]
where \( P(x) = \frac{2x}{1 + x^2} \) and \( Q(x) = x \). The integrating factor \( \mu(x) \) is:
\[
\mu(x) = e^{\int P(x) dx} = e^{\int \frac{2x}{1 + x^2} dx}
\]
The integral \( \int \frac{2x}{1 + x^2} dx \) is \( \ln(1 + x^2) \). So, the integrating factor becomes:
\[
\mu(x) = e^{\ln(1 + x^2)} = 1 + x^2
\]
Multiplying both sides of the equation by \( \mu(x) = 1 + x^2 \), we get:
\[
(1 + x^2)\frac{dy}{dx} + 2xy = x(1 + x^2)
\]
The left-hand side is the derivative of \( (1 + x^2)y \), so:
\[
\frac{d}{dx} \left( (1 + x^2)y \right) = x(1 + x^2)
\]
Now integrate both sides:
\[
(1 + x^2)y = \int x(1 + x^2) dx = \frac{x^2}{2} + \frac{x^4}{4} + C
\]
Thus, we have:
\[
y = \frac{x}{1 + x^2}
\]
Therefore, the correct solution is (A).