Solve the equation:
\[
x + \log_{15}(5 + 3x) = x \log_{15} 5 + \log_{15} 24
\]
Show Hint
When dealing with logarithmic equations, always simplify using log properties such as:
\[
\log_b A + \log_b B = \log_b(AB), \quad \log_b A^n = n \log_b A
\]
Try substitution if algebraic manipulation gets messy.
Updated On: Apr 20, 2025
Hide Solution
Verified By Collegedunia
Solution and Explanation
We are given the equation:
\[
x + \log_{15}(5 + 3x) = x \log_{15} 5 + \log_{15} 24
\]
Step 1: Bring like terms together
Move all terms to one side:
\[
x - x \log_{15} 5 + \log_{15}(5 + 3x) - \log_{15} 24 = 0
\]
Step 2: Use log rules
Use the subtraction property:
\[
\log_b A - \log_b B = \log_b \left(\frac{A}{B}\right)
\]
So:
\[
x(1 - \log_{15} 5) + \log_{15} \left( \frac{5 + 3x}{24} \right) = 0
\]
Now move one term to the other side:
\[
\log_{15} \left( \frac{5 + 3x}{24} \right) = -x(1 - \log_{15} 5)
\]
Let’s try plugging in the options.
---
Try \( x = 2 \):
Left-hand side:
\[
\log_{15}(5 + 3 \cdot 2) = \log_{15}(11)
\]
Right-hand side:
\[
2 \log_{15} 5 + \log_{15} 24
\]
Left:
\[
2 + \log_{15} 11
\]
Right:
\[
2 \log_{15} 5 + \log_{15} 24
\]
Now test LHS:
\[
2 + \log_{15} 11
\]
RHS:
\[
= \log_{15} 5^2 + \log_{15} 24 = \log_{15}(25 \cdot 24) = \log_{15}(600)
\]
Now LHS:
\[
= \log_{15}(15^2) + \log_{15} 11 = \log_{15}(225 \cdot 11) = \log_{15}(2475)
\]
But this gets messy. Try solving algebraically instead.
---
Try direct substitution of options into original equation.
Option A: \( x = 2 \)
LHS:
\[
x + \log_{15}(5 + 3x) = 2 + \log_{15}(5 + 6) = 2 + \log_{15}(11)
\]
RHS:
\[
x \log_{15} 5 + \log_{15} 24 = 2 \log_{15} 5 + \log_{15} 24 = \log_{15}(25) + \log_{15}(24) = \log_{15}(600)
\]
Now check if:
\[
2 + \log_{15}(11) = \log_{15}(600)
\Rightarrow \log_{15}(15^2 \cdot 11) = \log_{15}(2475)
\]
So both sides:
\[
\log_{15}(2475) = \log_{15}(600)
\Rightarrow \text{False}
\]
Wait — this contradiction implies \( x = 2 \) is NOT the solution.
Let’s instead plug values into the full original expression:
Try Option B: \( x = 1 \)
LHS:
\[
1 + \log_{15}(5 + 3 \cdot 1) = 1 + \log_{15}(8)
\]
RHS:
\[
1 \cdot \log_{15} 5 + \log_{15} 24 = \log_{15}(5 \cdot 24) = \log_{15}(120)
\]
LHS:
\[
= \log_{15}(15) + \log_{15}(8) = \log_{15}(15 \cdot 8) = \log_{15}(120)
\]
Both sides equal → ✅
\[
\boxed{x = 1}
\]
Was this answer helpful?
1
0
Top Questions on Exponential and Logarithmic Functions