Question:

Solve for $y : 2y^{2}+6y+\frac{17}{2}=0$.

Updated On: Apr 14, 2024
  • $\frac{3}{2} \pm i \sqrt{2}$
  • $-\frac{3}{2} \pm i \sqrt{2}$
  • $\frac{1}{2} \pm i \sqrt{2}$
  • $-\frac{1}{2} \pm i \sqrt{2}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We have, $2y^{2}+6y+\frac{17}{2}=0$ $\Rightarrow\, y^{2}+3y+\frac{17}{4}=0\quad$ (dividing both sides by 2) On adding and subtracting $\left(\frac{3}{2}\right)^{2}$ , we get $y^{2}+2\left(y\right)\left(\frac{3}{2}\right)+\left(\frac{3}{2}\right)^{2} -\left(\frac{3}{2}\right)^{2} +\frac{17}{4}=0$ $\Rightarrow\,\left(y+\frac{3}{2}\right)^{2} +2=0$ $\left(\because\, a^{2}+2ab+b^{2}=\left(a+b\right)^2\right)$ $\Rightarrow\, \left(y+\frac{3}{2}\right)^{2}-\left(i\sqrt{2}\right)^{2}=0$ $\Rightarrow\, \left(y+\frac{3}{2}+i\sqrt{2}\right)\left(y+\frac{3}{2}-i \sqrt{2}\right)=0$ $\left(\because\, a^{2}-b^{2}=\left(a+b\right)\left(a-b\right)\right)$ Either $y+\frac{3}{2}+i \sqrt{2}=0 $ or $y+\frac{3}{2}-i\sqrt{2}=0$ $\Rightarrow\, y=-\frac{3}{2}-i\sqrt{2}$ or $y=-\frac{3}{2}+i\sqrt{2}$ Hence, roots of the given equation are $-\frac{3}{2}-i\sqrt{2}$ and $-\frac{3}{2}+i \sqrt{2}$.
Was this answer helpful?
2
0

Concepts Used:

Quadratic Equations

A polynomial that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b, and c are the real numbers

Consider the following equation ax²+bx+c=0, where a≠0 and a, b, and c are real coefficients.

The solution of a quadratic equation can be found using the formula, x=((-b±√(b²-4ac))/2a)

Two important points to keep in mind are:

  • A polynomial equation has at least one root.
  • A polynomial equation of degree ‘n’ has ‘n’ roots.

Read More: Nature of Roots of Quadratic Equation

There are basically four methods of solving quadratic equations. They are:

  1. Factoring
  2. Completing the square
  3. Using Quadratic Formula
  4. Taking the square root