We have, $2y^{2}+6y+\frac{17}{2}=0$
$\Rightarrow\, y^{2}+3y+\frac{17}{4}=0\quad$ (dividing both sides by 2)
On adding and subtracting $\left(\frac{3}{2}\right)^{2}$ , we get
$y^{2}+2\left(y\right)\left(\frac{3}{2}\right)+\left(\frac{3}{2}\right)^{2} -\left(\frac{3}{2}\right)^{2} +\frac{17}{4}=0$
$\Rightarrow\,\left(y+\frac{3}{2}\right)^{2} +2=0$ $\left(\because\, a^{2}+2ab+b^{2}=\left(a+b\right)^2\right)$
$\Rightarrow\, \left(y+\frac{3}{2}\right)^{2}-\left(i\sqrt{2}\right)^{2}=0$
$\Rightarrow\, \left(y+\frac{3}{2}+i\sqrt{2}\right)\left(y+\frac{3}{2}-i \sqrt{2}\right)=0$
$\left(\because\, a^{2}-b^{2}=\left(a+b\right)\left(a-b\right)\right)$
Either $y+\frac{3}{2}+i \sqrt{2}=0 $
or $y+\frac{3}{2}-i\sqrt{2}=0$
$\Rightarrow\, y=-\frac{3}{2}-i\sqrt{2}$ or $y=-\frac{3}{2}+i\sqrt{2}$
Hence, roots of the given equation are $-\frac{3}{2}-i\sqrt{2}$ and $-\frac{3}{2}+i \sqrt{2}$.